Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 21(4): e48938, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32052574

RESUMO

Intestinal stem cells (ISCs) fuel the lifelong self-renewal of the intestinal tract and are paramount for epithelial repair. In this context, the Wnt pathway component LGR5 is the most consensual ISC marker to date. Still, the effort to better understand ISC identity and regulation remains a challenge. We have generated a Mex3a knockout mouse model and show that this RNA-binding protein is crucial for the maintenance of the Lgr5+ ISC pool, as its absence disrupts epithelial turnover during postnatal development and stereotypical organoid maturation ex vivo. Transcriptomic profiling of intestinal crypts reveals that Mex3a deletion induces the peroxisome proliferator-activated receptor (PPAR) pathway, along with a decrease in Wnt signalling and loss of the Lgr5+ stem cell signature. Furthermore, we identify PPARγ activity as a molecular intermediate of MEX3A-mediated regulation. We also show that high PPARγ signalling impairs Lgr5+ ISC function, thus uncovering a new layer of post-transcriptional regulation that critically contributes to intestinal homeostasis.


Assuntos
Mucosa Intestinal , Células-Tronco , Animais , Intestinos , Camundongos , Organoides , Receptores Acoplados a Proteínas G/genética , Via de Sinalização Wnt
2.
Front Physiol ; 7: 579, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965585

RESUMO

The oral route is the most preferable one when it comes to drug administration. Different animal models have been used to characterize the fate of potential medicines upon oral delivery but fail to clarify specific events occurring at localized sites of the gastrointestinal tract, particularly at the small intestine. We developed a new mouse intra-intestinal infusion model that enabled the direct administration of substances (such as drugs or nanoparticle drug carriers) in the small intestine through an implanted catheter, which can be maintained for prolonged periods of time. The location of catheter insertion can be previously determined as more proximal or distal, allowing to test specific portions of the intestine. Since the model is presumably able to maintain normal physiological characteristics, namely the mucus coating of the intestinal wall, it allowed studying the distribution of different nanoparticles upon localized intra-intestinal administration. The hereby proposed mouse model has the potential to be useful in other types of studies, namely in clarifying localized processes occurring at specific sites of the intestine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...